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Note 

Explicit Energy-Conserving Schemes for the 
Three-Body Problem 

1. THE PROBLEM 

Conservation and symmetry are two fundamental characteristics of physics [l]. 
But ordinary schemes for computation do not guarantee conservation of total 
energy. Even for the simplest case of the system, 

the ordinary methods, including the Euler method and the Runge-Kutta method, 
do not conserve the total energy. This question was raised first by D. Greenspan 
[2] and implicit schemes were given. C. Qin [3] gave an explicit scheme for this 
system. It is natural to extend the method to the famous three-body problem. 

2. THE EXPLICIT ENERGY-CONSERVING SCHEME FOR THE THREE-BODY PROBLEM 

Suppose there are three particles P,, P,, and P,. Let Mj (j = 0, 1, 2), (xi, yj, zj) 
and (uj, vj, wj) denote their masses, positions, and velocities at the time t, respec- 
tively. Denote the three distances by 

R, = [(Xl - x# + (y, - y,y + (21 - z,)2](1’2), 

R, = [(x2 - x,J2 + (y, - y,-$ + (z2 - z,,)~](“~), 

R, = [(x,, -xl)‘+ (y, -Y,)~+ (z. -z,)~](“~). 

Then the potential of this system can be written in the form [4]: 

v= V(x,y,z)= - 

Here the gravitational constant G is reduced to unity. 
The system of nine equations describing the motion of the three bodies is 

&!?5= -E 
’ dt2 6X,’ 

~.!!a= -v 
’ dt2 6Yj’ 

&2, -cv 
’ dt2 6Zj 

(j=O, 1, 2). 
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Or in the form of a system of 18 ordinary differential equations: 

dx. .---.J= Uj, dy,- 
dt dt 

- Oj, 
3=,. 
dt ” 

M.%= 2!i 
’ dt 6X,' 

‘&,2! 
’ dt 6Yj’ 

M,?= -g 
J 

(j=O, 1, 2). 
Denote the total kinetic energy of the system by Kin: 

Kin=Kin(u, v, t+)=i .i Mj(~,‘+v~+wj). 
J=o 

The equation of conservation of energy is then: 

(4) 

Kin(u, v, w) + V(x, y, z) = E. (5) 

Here E is the total energy of this system to be conserved. 
When we take the center of gravity of this system as the origin of the coordinate 

system, then we have also three identities, 
2 2 2 

1 Mixi= c Mjyj= c Mjzj=O, (6) 
j=O j=O j=O 

and three equations of conservation of linear momentums, 

i Mjuj= i Mjvj= i Mjwj=O. 
j=O j=O j=O 

(7) 

To any three fixed coordinate axes, there are three equations of conservation of 
angular momentum: 

c Mj(yjwj-zjvj)=a, 
j=O 

In this section we propose an explicit scheme for conserving the total energy for 
the case E < 0. For the case E > 0 we shall propose in the next section an explicit 
scheme to conserve not only the total energy but also the angular momentums. 

For the case E < 0, we take two steps: first we take an approximation; then we 
correct it in order to conserve the total energy E. 

Take an approximation formula: 
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jjJ~(~+Ly~‘+TUI”‘--- 
24 syj ’ 

z:‘“+l’=Z(“)+5W!n)-~SVo 
J J J 2Mj 6zj ’ 

~~(n+l’=p’- 16v’“’ 
J J = Mj sxj ’ 

1 6V’“’ ~++lLVI!“‘-*-- 
J Mj syj ’ 

1 SV’“’ ~~(~+l’+o-~-- 
J Mj 6zj 

(9) 

(j=O, 1, 2). 
Here r is the time step. (9) is a part of the ordinary Taylor expansions and does 

not satisfy condition (5). In order that (5) will be satisfied, we modify the first three 
quantities by a factor u: 

X~~+l’=u~Jp+l), 
J 

yy+l’=u~J~(~+l’, 

++ 1’ = u ~Jyl+ I), 
J 

U~n+lL~J~w+l’, 
J 

O(“+lL~J;(n+l’, 
J 

W(~+l’+j,~(n+l’* 
J 

Substituting (10) and (9) into (5) to determine the factor C, one gets: 
. 

Kin(u(“+‘), y(“+‘) ) dn+l’)+; v(n- (n+l’, y-(n+l)J-(n+l))=E, 

or 
jq/(X-(n+l), jj-(n+l),+n+1) 

1 
‘=~-Kin(u(“+l), y(“+l), w(“+l))’ 

(10) 

(11) 

Since we have assumed that E < 0, and of course, Kin’“+ ‘) > 0, V@+l) 2 0, 
V@+ ‘) < 0, so the denominator is not zero and (r is uniquely determined by (11). 

The scheme runs then in the order of (9), (1 l), and (10). It is explicit and it 
satisfies condition (5). 

It is easy to verify that, due to the property of the Newtonian potential 
V(x, y, z), the relations (6) and (7) are also conserved, once the initial conditions 
are satisfied. 
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Since very few exact solutions of the three-body problem are known, we can only 
take the famous Lagrange triangular configuration as an example to compare with 
the computational results. 

Take the masses of the three points as 

Mo=M,=M*=J5, 

and their initial positions and initial velocities as follows: 

(x0, yo, 20) = (0, 1, Oh 

(XlrY1dl)=(-~/2, -1/2,0), 

(x2, yT.3 z2) = ($/2, -l/Z O), 

(uo, 007 wo)=(-L&O), 

(U,,UlY w1)=(1/2, 4% Oh 

(u,, 02, w2) = (l/2, $/2, 0). 

Then (6) and (7) are satisfied initially, and the initial Kin and V are 

Kin = 3 &/2, v=-3& 

so that the total energy 

E=-3,,h/2<0. 

The lengths of the sides of the triangular configuration are $.and should be the 
same at all times. 

Now use the explicit energy conserving scheme with time increment 7 = 0.001 the 
calculations are carried out and the results of the three sides at the time nt are given 
in Table I. 

TABLE I 

0 1.73205081 1.73205081 1.73205081 
10 1.73205074 1.73205081 1.73205074 
20 1.73205019 1.73205081 1.73205020 
30 1.73204864 1.73205082 I.73204872 
40 1.73204558 1.73205083 1.73204582 
50 1.73204046 1.73205084 1.73204174 
60 1.73203274 1.73205087 1.73203396 
70 1.73202187 1.73205090 1.73202413 
80 1.73200728 1.73205094 1.73201115 
90 1.73198841 1.73205100 1.73199461 

100 1.73196467 1.73205106 1.73197413 
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3. AN EXPLICIT ALL CONSERVING SCHEME FOR THE THREE-BODY PROBLEM 

The scheme in last section does not conserve the angular momentums. In case 
that the total energy E is non-negative, we propose in this section an explicit 
scheme conserving all the 10 relations, i.e. (5), (6), (7), and (8). 

The idea runs as follows: We still take the first approximation (9), but change 
(10) as follows: 

X(n+‘L(5.~,++l), 
J 

$+‘Lgyj’“+‘), 

“(n+ 1) = g”cJ+z+ l), 
J 

&I+ 1) = aw,J++ 1). 
J 

There are four quantities 6, (TV, gv, and ew to be determined by the four conditions 
(5) and (8). 

First we substitute (12) into (8) to get the e,, (T”, and 0, expressed by known 
quantities and the unknown quantity o; then we use (5) to determine 0 and the 
scheme will be complete. 

Denote 
2 

xv= 1 Mj~JY(“+‘)fiJT(“+‘), 
j=O 

xw= i Mj~Jy("+')$Jy(n+'), 

j=O 

yu= i MjJJ++'$jJy("+'), 

j=O 

yw= i ~jjJ~("+')~J~w+'), 

j=O 

2 

zu= c &fjZJY-(“+‘);Jp+‘), 
j=o 

zJY= c MjFJ:(“+‘)fiJ:(“+‘). 
j=O 

Putting (12) into (8) one gets: 

a,(-ZY) +a,(YW)=u/a, 

~u(ZW + o,( - XW) = b/o, 

fJ,( - YU) + a,(W) = c/a. 

(13) 

(14) 
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Hence one gets 

with 

H, = 

H, = 

H,= 

a -zv YW 

b 0 -xw 

c xv 0 

0 a YW 

ZU b -xw 

--YU c 0 

0 -ZV a 

zu 0 b 

--YU xv c 

(15) 

0 -zv YW 
zu 0 -xw ) 

-YU xv 0 1 
![ 

0 -zv YW zu 0 -xw ) 
-YU xv 0 1 (16) 

0 -zv YW 
zu 0 -xw . 

-YU xv 0 1 
Substituting (15) in (12), and then substituting (12) in (5), one gets the quadratic 

equation to determine Q: 

Kin(HJ, H,& H,G)‘“+‘)/a2+ V(X, ~,.#“+‘)/a--E=O. (17) 

In this section we have assumed E 2 0. Notice that in actual computations, 

Kin(“+‘)>O, v’“+“<o; 

one can get the the unique positive root: 

1 [ - V(X, 7, Z) + { V2(X, y, Z) +4E Kin(H,& H,& H,,,W)}(1’2)](n+1) 
-= 
a 2Kin(HJ, Hoi?, HwC)(“+‘) 

(18) 

Now the scheme runs in the order (9), (13), (16), (18), (15), and (12). All 
processes are explicit and all 10 identities, i.e., the ten algebraic integrals, are 
conserved. 

The final results are as follows: 

X~n+lLaqn+l), 
3 

yjn+lLa~,~(n+l), 

Z!n+lLap+l), 
J 

~y+l)= (H,/a) QJ:("+'), 

~~+l)=(H,/a)~~~("+'), 

Wy+l)= (H,/a) @J~(n+'). 

(19) 
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The order of the scheme is: 

491 

(1) from (9), (13), and (16) to get H,, H,, and H,; 

(2) from (18) to get a; 
(3) from (9) and (19) to get the quantities in the (n+ 1) step; 

and one explicit cycle is complete. 
Since there, is no explicit analytic solution for comparison with numerical com- 

putation, one standard is that the correction factors 0, B,, G,, and e,,, should be as 
near unity as possible; the differences of these factors with 1 may serve as a measure 
of the errors. If no errors need to be corrected, then they all should be 1. 

The following is an example of computation: Take the Lagrange triangular 
configuration as a base, double its initial positions and initial velocities to get E > 0, 
and give some perturbations in the initial values to make this model not a planar 
motion. The initial values taken are as follows: 

i M X Y z ll ” w 

0 

1 

T 

2 Ji 

-3 I: 0.01 -2 0.01 

0.01 1 -0.02 

31 -0.02 1 

-4 

3 0.01 

From these initial values one gets: 

a = 0.141961524, 

b = -0.141961524, 

c = 20.7846096, 

I’= -2.59801126, 

Kin = 10.3928245, 

E = 7.79481321> 0. 

Again take the time increment z = 0.001, one can calculate this model for t = nz 
and obtain the error indication quantities rr, cU, crV, and oW as shown in Table II. 
Hence we see that the values 0, u,, (T,, and e,,, are quite near 1 as one should 
expect. 
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TABLE II 

n u U” 0” uw 

0 1 1 1 1 
10 0.999980693 1.00001926 1.00001926 1.00001926 
20 0.999973459 1.00002649 1.00002649 1.00002649 
30 0.999973845 1.00002611 1.00002611 1.00002611 
40 0.999974237 1.00002571 1.00002571 1.00002571 
50 0.999974636 1.00002532 1.00002531 1.00002532 
60 0.999975039 1.00002491 1.00002491 1.00002491 
70 0.999975450 1.00002450 1.00002450 1.00002450 
80 0.999975866 1.00002408 1.0@002408 1.00002408 
90 0.999976284 1.00002366 1.00002366 1 IWO02366 

100 0.999976713 1.00002324 1.00002324 1.00002324 
110 0.999977143 1.00002281 1.00002281 1.00002281 
120 0.999977577 1.00002237 1.00002237 1.00002237 
130 0.999978017 1.00002193 1.00002193 1.00002193 
140 0.999978459 1.00002147 1.00002147 1.00002149 
150 0.999978906 1OOOO2104 1.00002104 1.00002104 
160 0.999979354 1.00002060 1.00002060 1.00002060 
170 0.999979808 1.00002014 1.00002014 1.00002014 
180 0.999980262 1.00001969 1.00001969 1.00001969 
190 0.999980719 1.00001923 1.00001923 1.00001923 
200 0.999981178 1.00001877 1.00001877 1.00001877 

4. REMARKS 

(1) There is no difficulty in extending the method in Sections 2 and 3 to the 
n-body problem, only the terms in I’ and Kin should be increased accordingly, but 
there are still 10 algebraic integrals to be conserved. The amount of numerical 
calculations increases proportional to the number n. 

(2) For E ~0, the method of Section 3 may give imaginary values for u, so the 
time step should be limited in this case and a check of the sign of the quantity in 
the square root should be imposed accordingly. 

(3) The formulas are symmetrical with respect to x, y, and z, but the initial 
values may not be symmetrical with respect to x, y, and z. For example, the initial 
position of the Lagrange triangular configuration is not symmetrical’with respect to 
both x-axis and y-axis; this leads to the unsymmetrical results. 

(4) In case the determinant of the system (14) is zero, further conditions are 
needed to solve the system. For example, the planar motion with z = 0; then only 
one angular momentum must be considered. 
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